295 research outputs found

    A hybridizable discontinuous Galerkin method for electromagnetics with a view on subsurface applications

    Full text link
    Two Hybridizable Discontinuous Galerkin (HDG) schemes for the solution of Maxwell's equations in the time domain are presented. The first method is based on an electromagnetic diffusion equation, while the second is based on Faraday's and Maxwell--Amp\`ere's laws. Both formulations include the diffusive term depending on the conductivity of the medium. The three-dimensional formulation of the electromagnetic diffusion equation in the framework of HDG methods, the introduction of the conduction current term and the choice of the electric field as hybrid variable in a mixed formulation are the key points of the current study. Numerical results are provided for validation purposes and convergence studies of spatial and temporal discretizations are carried out. The test cases include both simulation in dielectric and conductive media

    eXtended hybridizable discontinuous Galerkin for incompressible flow problems with unfitted meshes and interfaces

    Get PDF
    The eXtended hybridizable discontinuous Galerkin (X-HDG) method is developed for the solution of Stokes problems with void or material interfaces. X-HDG is a novel method that combines the hybridizable discontinuous Galerkin (HDG) method with an eXtended finite element strategy, resulting in a high-order, unfitted, superconvergent method, with an explicit definition of the interface geometry by means of a level-set function. For elements not cut by the interface, the standard HDG formulation is applied, whereas a modified weak form for the local problem is proposed for cut elements. Heaviside enrichment is considered on cut faces and in cut elements in the case of bimaterial problems. Two-dimensional numerical examples demonstrate that the applicability, accuracy, and superconvergence properties of HDG are inherited in X-HDG, with the freedom of computational meshes that do not fit the interfacesPeer ReviewedPostprint (author's final draft

    On the stability of projection methods for the incompressible Navier-Stokes equations based on high-order discontinuous Galerkin discretizations

    Full text link
    The present paper deals with the numerical solution of the incompressible Navier-Stokes equations using high-order discontinuous Galerkin (DG) methods for discretization in space. For DG methods applied to the dual splitting projection method, instabilities have recently been reported that occur for coarse spatial resolutions and small time step sizes. By means of numerical investigation we give evidence that these instabilities are related to the discontinuous Galerkin formulation of the velocity divergence term and the pressure gradient term that couple velocity and pressure. Integration by parts of these terms with a suitable definition of boundary conditions is required in order to obtain a stable and robust method. Since the intermediate velocity field does not fulfill the boundary conditions prescribed for the velocity, a consistent boundary condition is derived from the convective step of the dual splitting scheme to ensure high-order accuracy with respect to the temporal discretization. This new formulation is stable in the limit of small time steps for both equal-order and mixed-order polynomial approximations. Although the dual splitting scheme itself includes inf-sup stabilizing contributions, we demonstrate that spurious pressure oscillations appear for equal-order polynomials and small time steps highlighting the necessity to consider inf-sup stability explicitly.Comment: 31 page

    Efficient Explicit Time Stepping of High Order Discontinuous Galerkin Schemes for Waves

    Full text link
    This work presents algorithms for the efficient implementation of discontinuous Galerkin methods with explicit time stepping for acoustic wave propagation on unstructured meshes of quadrilaterals or hexahedra. A crucial step towards efficiency is to evaluate operators in a matrix-free way with sum-factorization kernels. The method allows for general curved geometries and variable coefficients. Temporal discretization is carried out by low-storage explicit Runge-Kutta schemes and the arbitrary derivative (ADER) method. For ADER, we propose a flexible basis change approach that combines cheap face integrals with cell evaluation using collocated nodes and quadrature points. Additionally, a degree reduction for the optimized cell evaluation is presented to decrease the computational cost when evaluating higher order spatial derivatives as required in ADER time stepping. We analyze and compare the performance of state-of-the-art Runge-Kutta schemes and ADER time stepping with the proposed optimizations. ADER involves fewer operations and additionally reaches higher throughput by higher arithmetic intensities and hence decreases the required computational time significantly. Comparison of Runge-Kutta and ADER at their respective CFL stability limit renders ADER especially beneficial for higher orders when the Butcher barrier implies an overproportional amount of stages. Moreover, vector updates in explicit Runge--Kutta schemes are shown to take a substantial amount of the computational time due to their memory intensity

    A high-order semi-explicit discontinuous Galerkin solver for 3D incompressible flow with application to DNS and LES of turbulent channel flow

    Full text link
    We present an efficient discontinuous Galerkin scheme for simulation of the incompressible Navier-Stokes equations including laminar and turbulent flow. We consider a semi-explicit high-order velocity-correction method for time integration as well as nodal equal-order discretizations for velocity and pressure. The non-linear convective term is treated explicitly while a linear system is solved for the pressure Poisson equation and the viscous term. The key feature of our solver is a consistent penalty term reducing the local divergence error in order to overcome recently reported instabilities in spatially under-resolved high-Reynolds-number flows as well as small time steps. This penalty method is similar to the grad-div stabilization widely used in continuous finite elements. We further review and compare our method to several other techniques recently proposed in literature to stabilize the method for such flow configurations. The solver is specifically designed for large-scale computations through matrix-free linear solvers including efficient preconditioning strategies and tensor-product elements, which have allowed us to scale this code up to 34.4 billion degrees of freedom and 147,456 CPU cores. We validate our code and demonstrate optimal convergence rates with laminar flows present in a vortex problem and flow past a cylinder and show applicability of our solver to direct numerical simulation as well as implicit large-eddy simulation of turbulent channel flow at Reτ=180Re_{\tau}=180 as well as 590590.Comment: 28 pages, in preparation for submission to Journal of Computational Physic

    Algorithms and data structures for matrix-free finite element operators with MPI-parallel sparse multi-vectors

    Full text link
    Traditional solution approaches for problems in quantum mechanics scale as O(M3)\mathcal O(M^3), where MM is the number of electrons. Various methods have been proposed to address this issue and obtain linear scaling O(M)\mathcal O(M). One promising formulation is the direct minimization of energy. Such methods take advantage of physical localization of the solution, namely that the solution can be sought in terms of non-orthogonal orbitals with local support. In this work a numerically efficient implementation of sparse parallel vectors within the open-source finite element library deal.II is proposed. The main algorithmic ingredient is the matrix-free evaluation of the Hamiltonian operator by cell-wise quadrature. Based on an a-priori chosen support for each vector we develop algorithms and data structures to perform (i) matrix-free sparse matrix multivector products (SpMM), (ii) the projection of an operator onto a sparse sub-space (inner products), and (iii) post-multiplication of a sparse multivector with a square matrix. The node-level performance is analyzed using a roofline model. Our matrix-free implementation of finite element operators with sparse multivectors achieves the performance of 157 GFlop/s on Intel Cascade Lake architecture. Strong and weak scaling results are reported for a typical benchmark problem using quadratic and quartic finite element bases.Comment: 29 pages, 12 figure
    • …
    corecore